sg电子竞技俱乐部-终极破坏

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

百家乐官网论坛bocaila| 风水(24山定凶吉)最新整理| 玩百家乐官网怎么才能赢| 如何看百家乐的玩法技巧和规则| 大发888song58| 百家乐太阳城| 捷豹百家乐官网的玩法技巧和规则 | 百家乐的玩法技巧和规则| 峨边| 网上的百家乐官网怎么才能| 大发888老虎机游戏| 网上百家乐官网庄家有赌场优势吗| 百家乐平玩法lm0| 德州扑克大小规则| 七胜百家乐官网娱乐城总统网上娱乐城大都会娱乐城赌场 | 威尼斯人娱乐场 赌场网址| 澳门百家乐官网怎样下注| 赌场百家乐规则| 澳门百家乐官网规例| 百家乐台布21点| 优博娱乐在线| 百家乐冯氏坐庄法| 豪华百家乐官网桌子厂家| 百家乐荷官培训| 百家乐官网下载游戏| 视频百家乐赢钱| 解析百家乐官网投注法| 百家乐玩法教程| 新葡京百家乐官网现金| 狮威百家乐官网娱乐| 风水24山详解| 葡京线上娱乐| 太阳城百家乐优惠| 屏东县| 百家乐明灯| 大发888娱乐场东南网| 全讯网90| 试玩区百家乐官网1000| 大发888怎么进不去| 24山的丑方位| 米易县|