sg电子竞技俱乐部-终极破坏

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

百家乐官网投注组合| 百家乐官网澳门赌| 大发888在线娱乐百家乐| 赌百家乐官网澳门| 大发888娱乐城官方| 金钱豹百家乐官网的玩法技巧和规则 | 为什么百家乐官网玩家越来越多选择网上百家乐官网 | 大发888攻略| 阳宅风水24向详解| 娱乐城百家乐官网高手| 首席百家乐的玩法技巧和规则| 中国百家乐官网软件| 百家乐开户| 威尼斯人娱乐场色| 百家乐正网包杀| 申博百家乐官网有假吗| 永靖县| 大发888娱乐城手机版| 温州百家乐真人网| 利博百家乐官网的玩法技巧和规则| 赌场大轮盘| 百家乐的珠盘| 适合属虎做生意的名字| 皇冠现金网址| 索罗门百家乐的玩法技巧和规则 | 百家乐游戏技巧| 博狗百家乐官网的玩法技巧和规则| 德庆县| 大发888 ber娱乐场下载| 免费百家乐官网追号软件| 大发888网页版登录| 百家乐永利娱乐| 金木棉百家乐官网网络破解| 百家乐官网天下第一缆| 博彩论坛交流中心| 网上百家乐娱乐场开户注册| 做生意带什么装饰招财| 百家乐官网网上真钱娱乐网| 最新六合彩开奖结果| 大发888官方zhuce| 女优百家乐的玩法技巧和规则|